

DECEMBER 2025

ISSN : 2583-7869

# THE PAHADI AGRICULTURE

## E-MAGAZINE

VOLUME-03

ISSUE:12



[WWW.PAHADIAGRROMAGAZINE.IN](http://WWW.PAHADIAGRROMAGAZINE.IN)

# Table of Contents

|                                                                                                                                                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Microgreens as a Sustainable Source of Nutrients for Human Health...1</b>                                                                                |  |
| Moinuddin, Ateeq Khan, Khulakpam Rahish Ahmed and Shadab Khan                                                                                               |  |
| Shri Guru Ram Rai University, Dehradun, Uttrakhand                                                                                                          |  |
| <b>PGPR: Current and future prospects for development of sustainable agriculture.....3</b>                                                                  |  |
| Sakshi Sharma, Pardeep Kumar, Twinkle and Akshay Pathania                                                                                                   |  |
| Department of Plant Pathology, CSK Himachal Pradesh Agricultural University, Palampur, HP, India                                                            |  |
| <b>Cultivation and Conservation of the Kala Zeera (Black Cumin) under adverse climatic condition in Himalaya Region.....7</b>                               |  |
| Dr. Kehar Singh Thakur                                                                                                                                      |  |
| Krishi Vigyan Kendra Chamba, Dr. Y.S. Parmar University of Horticulture & Forestry, Nauni, HP                                                               |  |
| <b>Premature Autumn Blooming in Apples of Kinnaur: Causes, Zone-wise Manifestation, Impacts and Management Strategies .....11</b>                           |  |
| Arun Kumar, Durga Prashad Bhandari and Deepika                                                                                                              |  |
| Regional Horticultural Research & Training Station, Sharbo and Krishi Vigyan Kendra Kinnaur.                                                                |  |
| <b>The Journey of Safflower: Cultivation Practices and its Significance Today.....15</b>                                                                    |  |
| Ashutosh Bharat Gawande <sup>1</sup> , Vivek Kumar <sup>2*</sup>                                                                                            |  |
| <sup>1</sup> M.Sc.( Scholar), Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, UP |  |
| <sup>2</sup> * Project Associate, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP                                                      |  |
| <b>हिमाचल प्रदेश में कचालू का झुलसा रोग – प्रकोप एवं प्रबंधन .....19</b>                                                                                    |  |
| 1अरुणेश कुमार, 2मीनू गुप्ता, <sup>3</sup> सतीश कुमार शर्मा, <sup>4</sup> सौरव शर्मा एवं <sup>5</sup> रानू पठानिया                                           |  |
| <sup>1,2&amp;3</sup> पादप रोग विज्ञान विभाग, डॉ. यशवंत सिंह परमार बागवानी एवं वानिकी विश्वविद्यालय, नौणी, सोलन                                              |  |
| <sup>4&amp;5</sup> सस्य विज्ञान विभाग, चौधरी सरकन कुमार हिमाचल प्रदेश कृषि विश्वविद्यालय, पालमपुर                                                           |  |

|                                                                                                                                                                         |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| सब्जियों की स्वस्थ नर्सरी तैयार करने हेतु भूमि एवं बीज शोधन की विधिया .....                                                                                             | 22        |
| स्वागत रंजन बेहेरा <sup>1</sup> , उमा पंत <sup>1</sup> , अंजना सुरेश <sup>1</sup> , अभय शर्मा <sup>2</sup> और उधम सिंह <sup>3</sup>                                     |           |
| 'सब्जी विज्ञान विभाग, कृषि महाविद्यालय, <sup>2</sup> पादप रोग विज्ञान विभाग, कृषि महाविद्यालय, गोविन्द बल्लभ पंत कृषि एवं प्रौद्योगिक विश्वविद्यालय, पंतनगर, उत्तराखण्ड |           |
| 'सब्जी विज्ञान विभाग, उद्यान महाविद्यालय, बांदा कृषि एवं प्रौद्योगिकी विश्वविद्यालय, बांदा, उत्तर प्रदेश                                                                |           |
| सब्जी फसलों में लगने वाले नाशीजीव व उनका ऐकीकृत नाशीजीव प्रबंधन .....                                                                                                   | 24        |
| ट्रिविंकल, प्रदीप कुमार, आरुषी चौहान, प्रकृति और साक्षी शर्मा                                                                                                           |           |
| पादप रोग विभाग, चौ. स. कु. हि. प्र. कृषि विश्वविद्यालय, पालमपुर                                                                                                         |           |
| <b>Bhawan Singh Koranga.....</b>                                                                                                                                        | <b>28</b> |
| <b>Vill- Sama, Block- Kapkot</b>                                                                                                                                        |           |
| <b>District- Bageshwar</b>                                                                                                                                              |           |
| सब्जी उत्पादन एक सफल व्यवसाय .....                                                                                                                                      | 30        |
| श्री नरेंद्र सिंह गुसाई                                                                                                                                                 |           |
| ग्राम गठरी खरल, ब्लॉक पोखरा, जिला पौड़ी गढ़वाल                                                                                                                          |           |

## The Pahadi Agriculture e-Magazine

Volume-3, Issue-12

### Microgreens as a Sustainable Source of Nutrients for Human Health

Moinuddin, Ateeq Khan, Khulakpam Rahish Ahmed and Shadab Khan

Shri Guru Ram Rai University, Dehradun, Uttrakhand

**Microgreens** are young, nutrient-rich seedlings of vegetables. They contain exceptionally high levels of vitamins, minerals, antioxidants, and bioactive phytochemicals, often surpassing the nutrient content of mature plants. Their consumption has been associated with enhanced immunity, improved digestion, reduced oxidative stress, and a lower risk of chronic diseases such as diabetes, hypertension, and cardiovascular disorders. Due to their short growth cycle, minimal resource requirements, and suitability for urban and indoor farming, microgreens offer a sustainable and efficient way to enhance dietary nutrition. This paper highlights the nutritional composition, health benefits, and significance of microgreens in promoting human health and nutritional security.

**Keywords:** Microgreens, Nutrient Density, Antioxidants, Phytochemicals, Human Health, Functional Foods, Chronic Diseases, Sustainable Nutrition

#### Introduction:

Microgreens are young, tender seedlings of vegetables, herbs, and legumes harvested 7–21 days after germination. Despite their small size, they possess exceptionally high concentrations of vitamins, minerals, antioxidants, and phytochemicals. Due to their nutrient density, microgreens are increasingly recognized as a functional food providing multiple health benefits. Microgreens are young plants that are harvested when they are small but full of nutrients. Although they look tiny, they are packed with vitamins, minerals, and antioxidants. Many studies show that microgreens have much higher nutrient levels than fully grown vegetables. Because of this, they help improve immunity, provide strength, and protect the body from diseases. They can be grown easily at home, require very little space, and grow very quickly. Due to their rich nutritional value, appealing taste, and health benefits, microgreens are

becoming an important part of healthy diets around the world.

#### Nutritional Benefits of Microgreens for Human Health

**High Nutrient Density:** Microgreens include appreciably better concentrations of nutrients, minerals, and bioactive compounds compared to their mature opposite numbers, with studies reporting four–40 times extra nutrient tiers in line with unit mass.



**Rich Antioxidant Profile:** They are abundant in antioxidants along with flavonoids, phenolic acids, carotenoids, and nutrition C,

which assist neutralize reactive oxygen species (ROS) and decrease oxidative pressure-associated cellular damage.

**Cardio Protective Effects:** Microgreens including red cabbage, mustard, and fenugreek show off lipid-reducing houses, contributing to reduced LDL ldl cholesterol,



advanced HDL tiers, and usual cardiovascular protection.

**Antidiabetic Potential:** Species like fenugreek, moong bean, and mustard microgreens display better levels of fiber and polyphenols that assist higher glycemic control, improve insulin sensitivity, and gradual post-prandial glucose spikes. High stages of nutrients A, C, E, and crucial micronutrients decorate immune cell function, improve resistance to infections, and assist usual immune gadget activity.

**Digestive Health Support:** Dietary fiber and prebiotic compounds in microgreens promote intestine fitness by improving beneficial microbiota, enhancing digestion, and reducing incidence of gastrointestinal issues.

**Bone Health Enhancement:** Microgreens along with lentil and finger millet are rich in calcium, magnesium, manganese, and vitamin K, supporting bone mineralization and decreasing the chance of osteoporosis.

**Vision Protection:** Carotenoid-rich microgreens (e.G., mustard) supply beta-

carotene and lutein, which contribute to retinal fitness, protect against age-related macular degeneration, and guide universal visible feature. The presence of bioactive compounds like flavonoids, glucosinolates, and omega-3 fatty acids contributes to decreased systemic inflammation and may aid in dealing with chronic inflammatory situations.

**Weight Management:** Microgreens are low in energy however high in fiber, facilitating appetite regulation, improving satiety, and supporting weight management techniques.

**Functional Food Characteristics:** Due to the high awareness of fitness-promoting phytochemicals, microgreens are increasingly more seemed as practical foods with capability programs in preventing persistent illnesses

**High Phytochemical Diversity:** Microgreens possess a wide range of phytochemicals such as:

**Glucosinolates** (broccoli, mustard, radish)

**Anthocyanins** (red cabbage, beet, amaranthus)

**Phenolic acids** (basil, coriander)

**Lutein &  $\beta$ -carotene** (spinach, kale)

These compounds show strong **anti-inflammatory, anti-carcinogenic, and detoxifying effects.**

#### **Conclusion:**

Among the five tested vegetation, black mustard and moong dal microgreens show the great combination of increase rate and nutrient density. Lentil microgreens excel in protein, and finger millet remains a powerhouse of minerals. These effects can assist commercial growers and nutritionists pick out advanced microgreen species

## PGPR: Current and future prospects for development of sustainable agriculture

**Sakshi Sharma, Pardeep Kumar, Twinkle and Akshay Pathania**

**Department of Plant Pathology, CSK Himachal Pradesh Agricultural University, Palampur, HP, India**

**The Green Revolution** significantly boosted global crop production through high-yielding varieties and intensive use of synthetic fertilizers and pesticides; however, this has led to long-term degradation of soil health, biodiversity loss, and reduced ecosystem resilience (Kesavan et al. 2018; Pingali 2012). Modern agriculture now faces limitations such as declining soil fertility, reduced arable land, and environmental contamination. Therefore, transitioning toward sustainable agricultural practices has become a global priority. Among various eco-friendly strategies, *Plant Growth-Promoting Rhizobacteria* (PGPR) offer an effective biological alternative to agrochemicals by enhancing nutrient availability, improving plant vigor, suppressing pathogens, and restoring soil health (Glick 2012).

### **Types of PGPR**

PGPR are broadly classified into two categories: extracellular PGPR (ePGPR) and intracellular PGPR (iPGPR) (Martínez-Viveros et al. 2010). ePGPR reside in the rhizosphere, rhizoplane, or intercellular root spaces and include genera such as *Agrobacterium*, *Arthrobacter*, *Azotobacter*, *Azospirillum*, *Caulobacter*, *Chromobacterium*, *Erwinia*, and *Flavobacterium* (Ahmed and Kibret 2014). iPGPR colonize internal root tissues, especially root nodules, and are primarily represented by *Rhizobiaceae* members such as *Rhizobium*, *Bradyrhizobium*, *Mesorhizobium*, *Allorhizobium*, and actinobacteria like *Frankia* (Bhattacharyya and Jha 2012). These microbes establish symbiotic or associative relationships, often contributing directly to nutrient acquisition and plant growth.

### **Mechanisms of Plant Growth Promotion**

PGPR enhance plant growth through direct and indirect mechanisms, including nutrient

solubilization, phytohormone production, ACC deaminase activity, antioxidant defense, and the suppression of plant pathogens.

### **Biological Nitrogen Fixation**

Nitrogen-fixing PGPR convert atmospheric nitrogen into plant-available ammonia using nitrogenase enzymes encoded by *nif* genes (Gaby and Buckley 2012). Symbiotic nitrogen-fixers such as *Rhizobium*, *Bradyrhizobium*, and *Frankia* form nodules on host roots (Zeng et al. 2022).

### **Phosphate Solubilization**

Phosphate-solubilizing PGPR such as *Bacillus*, *Pseudomonas*, *Enterobacter*, and *Rhizobium* release organic acids, enzymes, and chelators that convert insoluble P into plant-available forms (Sharma et al. 2013; Bhattacharyya and Jha 2012).

### **Potassium Solubilization**

Potassium deficiency hampers root growth, seed formation, and yield. PGPR including *Bacillus edaphicus*, *Bacillus mucilaginous*, *Burkholderia*, *Paenibacillus*, and

*Acidothiobacillus* solubilize K-bearing minerals through organic acid production (Han and Lee 2006; Singh et al. 2010; Liu et al. 2012).

### **Phytohormone Production**

Many PGPR synthesize phytohormones including indole acetic acid (IAA), cytokinins, and gibberellins, which regulate root development, cell elongation, seed germination, and nutrient absorption (Arora et al. 2013).

### **ACC Deaminase Activity**

ACC deaminase-producing PGPR lower plant ethylene levels, which helps plants tolerate abiotic stresses and improves root elongation. Strains from genera *Agrobacterium*, *Bacillus*, *Burkholderia*, *Pseudomonas*, and *Rhizobium* possess this trait (Glick et al. 2007; Kang et al. 2010).

### **Lytic Enzyme Production**

PGPR secrete enzymes such as chitinases, glucanases, lipases, and proteases that degrade pathogen cell walls, suppressing fungi like *Botrytis cinerea*, *Fusarium oxysporum*, *Rhizoctonia solani*, and *Sclerotium rolfsii* (Hayat et al. 2010; Nadeem et al. 2013).

### **Exopolysaccharide (EPS) Production**

EPS produced by PGPR are polymeric compounds composed primarily of sugars such as glucose, galactose, and mannose (Sutherland 2001). EPS contribute to microbial adhesion, biofilm formation, drought tolerance, and plant defense activation (Naseem and Bano 2014). They improve soil aggregation and facilitate root colonization.

### **Isolation, Characterization, and Mass Multiplication of PGPR**

Isolation of PGPR begins with rhizosphere soil sampling followed by serial dilution and

plating on selective media such as Nutrient Agar, King's B, or Pikovskaya's Agar (Glick 1995). Promising colonies are subjected to morphological, biochemical, and physiological characterization, including tests for IAA, siderophores, ACC deaminase, and phosphate solubilization (Dey et al. 2004). Mass multiplication is performed using liquid or solid-state fermentation. Carriers such as talc, peat, or liquid formulations enhance shelf life and viability ( $10^8$ – $10^9$  CFU/mL) for field application.

### **Delivery Systems for PGPR**

Several delivery methods improve PGPR colonization and field performance:

Bio-priming integrates hydration with inoculation, enhancing germination under stress (Rakshit et al. 2015).

Seedling dip is used for transplanted crops to ensure rapid colonization (Dey et al. 2004).

Soil drenching delivers PGPR directly to the rhizosphere, improving disease suppression (Malusa et al. 2012).

Foliar application supports nutrient uptake and ISR induction (Bashan and de-Bashan 2010).

Sett treatment helps vegetatively propagated crops enhance establishment and resistance (Glick 1995).

### **Role of Root Exudates in PGPR Colonization**

Root exudates comprising sugars, amino acids, organic acids, phenolics, and flavonoids—shape rhizosphere microbiome dynamics and influence chemotaxis, adhesion, biofilm formation, and endophytic penetration (Badri and Vivanco 2009). Malic acid attracts *Bacillus subtilis* and enhances plant immunity (Rudrappa et al. 2008), while flavonoids regulate nodulation in legumes through

*Rhizobium* signaling (Hassan and Mathesius 2012). Some metabolites promote endophyte internalization by modifying host cell walls and reducing immune responses (Kandel et al. 2017).

Steps of Colonization by PGPR and Endophytes

Chemotaxis toward root exudates (Badri and Vivanco 2009)

Adhesion to rhizoplane using pili, flagella, and EPS (Compant et al. 2010)

#### REFERENCES

- Ahemad M and Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. *Journal of King Saud University-Science* 26(1): 1-20
- Arora NK, Tewari S and Singh R. 2013. Multifaceted plant-associated microbes and their mechanisms diminish the concept of direct and indirect PGPRs. In Plant microbe symbiosis: Fundamentals and advances. Springer India. 2(6): 411-449
- Badri DV and Vivanco JM. 2009. Regulation and function of root exudates. *Plant, Cell and Environment* 32(6): 666-681
- Bashan Y and de-Bashan LE. 2010. How the plant growth-promoting bacterium *Azospirillum* promotes plant growth—a critical assessment. *Advances in Agronomy* 10(8): 77–136.
- Bashan Y and de-Bashan L E. 2010. How the plant growth-promoting bacterium *Azospirillum* promotes plant growth—A critical assessment. *Plant and Soil* 336(1): 5–26.
- Bhattacharyya PN and Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. *World Journal of Microbiology and Biotechnology* 28: 1327-1350
- Compant S, Clement C and Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. *Trends in Microbiology* 18(10): 495–505
- Costa OYA, Raaijmakers JM and Kuramae EE. 2018. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. *Frontiers in Microbiology* 9: 1636
- Dey R, Pal KK, Bhatt DM and Chauhan SM. 2004. Plant growth-promoting rhizobacteria: Mechanisms and current prospective. *Journal of Scientific & Industrial Research* 63(10): 807–820
- Gaby JC and Buckley DH. 2012. A comprehensive evaluation of PCR primers to amplify the nif H gene of nitrogenase. *Frontiers in Microbiology* 7(7): 42149-42149
- Gandhi R, Prittessh P, Jinal HN, Chavan SM, Paul D and Amaresan N. 2023. Evaluation of the effect of potassium solubilizing bacterial strains on the growth of wheat (*Triticum aestivum* L.). *Journal of Plant Nutrition* 46(8): 1479-1490
- Glick BR. 1995. The enhancement of plant growth by free-living bacteria. *Canadian Journal of Microbiology* 41(2): 109–117
- Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J and McConkey B. 2007. Promotion of plant growth by bacterial ACC deaminase. *Critical Reviews in Plant Sciences* 26(5): 227-242
- Han HS and Lee KD. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. *Plant soil and Environment* 52(3) :130
- Hassan S and Mathesius U. 2012. The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. *Journal of Experimental Botany* 63(9): 3429–3444
- Hayat R, Ali S, Amara U, Khalid R and Ahmed I. 2010. Soil beneficial bacteria and their role in plant growth promotion: a review. *Annals of microbiology* 60: 579-598

Biofilm formation for stability and protection (Rudrappa et al. 2008)

Rhizosphere proliferation and expression of beneficial traits

Penetration of root tissues by enzymes such as cellulases and pectinases (Kandel et al. 2017)

Systemic movement through vascular tissues

Establishment of mutualistic interaction supporting nutrient uptake and stress tolerance

- Joshi M, Srivastava R, Sharma AK and Prakash A. 2012. Screening of resistant varieties and antagonistic *Fusarium oxysporum* for biocontrol of *Fusarium* wilt of chilli. *Journal of Plant Pathology and Microbiology* 4(5): 9-10
- Kandel SL Joubert PM and Doty SL. 2017. Bacterial endophyte colonization and distribution within plants. *Microorganisms* 5(4): 77
- Kang BG, Kim WT, Yun HS and Chang SC. 2010. Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. *Plant Biotechnology Reports* 4 :179-183
- Kesavan PC and Swaminathan MS. 2018. Modern technologies for sustainable food and nutrition security. *Current Science* 115: 1876–1883
- Liu D, Lian B and Don H. 2012. Isolation of *Paenibacillus sp.* and assessment of its potential for enhancing mineral weathering. *Geomicrobiology Journal* 29(5): 413-421
- Martínez-Viveros O, Jorquera MA, Crowley D E, Gajardo GMLM and Mora ML. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. *Journal of soil science and plant nutrition* 10(3): 293-319
- Nadeem SM, Naveed M, Zahir ZA and Asghar HN. 2013. Plant–microbe interactions for sustainable agriculture: fundamentals and recent advances. *Plant microbe symbiosis: fundamentals and advances* 5(9): 51-103
- Naseem H and Bano A. 2014. Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. *Journal of Plant Interactions* 9(1): 689–701
- Naznin HA, Kimura M, Miyazawa M and Hyakumachi M. 2013. Analysis of volatile organic compounds emitted by plant growth-promoting fungus *Phoma sp.* GS8-3 for growth promotion effects on tobacco. *Microbes and environments* 28(1): 42-49
- Pandey D, Kehri HK, Zoomi I, Singh U, Chaudhri KL and Akhtar O. 2020. Potassium solubilizing microbes: Diversity, ecological significances and biotechnological applications. *Plant Microbiomes for Sustainable Agriculture* 26(3): 2-6
- Pingali PL. 2012. Green revolution: Impacts, limits, and the path ahead. *Proceedings of the National Academy of Sciences of the United States of America* 10(9):12302–12308
- Rakshit A, Singh HB and Sen A. 2015. Nutrient use efficiency: From basics to advances. *Springer India*. <https://doi.org/10.1007/978-81-322-2169-2>
- Rudrappa T, Czymbek KJ, Pare PW and Bais HP. 2008. Root-secreted malic acid recruits beneficial soil bacteria. *Plant Physiology* 148(3): 1547–1556
- Schwyn B and Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. *Analytical biochemistry* 160(1): 47-56
- Sharma SB, Sayyed RZ, Trivedi MH and Gobi TA. 2013. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. *SpringerPlus* 2: 1-14
- Singh G, Biswas DR and Marwaha TS. 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (*Zea mays*) and wheat (*Triticum aestivum L.*): a hydroponics study under phytotron growth chamber. *Journal of plant nutrition* 33(8): 1236-1251
- Sujatha N and Ammani K. 2013. Siderophore production by the isolates of fluorescent Pseudomonads. *International Journal of Current Research and Review* 5(20): 1
- Sutherland IW. 2001. Biofilm exopolysaccharides: A strong and sticky framework. *Microbiology* 147(1): 3–9
- Zeng Q, Ding X, Wang J, Han X, Iqbal HM and Bilal M. 2022. Insight into soil nitrogen and phosphorus availability and agricultural sustainability by plant growth-promoting rhizobacteria. *Environmental Science and Pollution Research* 29(30): 45089-45106

## Cultivation and Conservation of the Kala Zeera (Black Cumin) under adverse climatic condition in Himalaya Region

**Dr. Kehar Singh Thakur**

Krishi Vigyan Kendra Chamba, Dr. Y.S. Parmar University of Horticulture & Forestry, Nauni, HP

**The entire Himalaya region** which is known for its extensive high mountain ranges is a treasure house for many medicinal plants and is endowed with rich diversity of these valuable natural resources. Himachal Pradesh, a hilly state situated in the North-West Himalayas is bound between  $30^{\circ} 22' 40''$  to  $30^{\circ} 12' 40''$  north latitude and  $75^{\circ} 47' 55''$  to  $79^{\circ} 40' 20''$  east longitude and altitudinal range lies between 350 m to 6,975 m above mean sea level. The geographical area of Himachal Pradesh is 55, 673 km<sup>2</sup>, which is 9.42 per cent of entire Indian Himalayan Region and hosts of a wide diversity of plant forms of central area.

The Kala Zeera, Black cumin (scientifically known as *Bunium persicum* Boiss) is an economically important medicinal plant and spice herb growing wild in the dry temperate regions of North Western Himalayas. It grows as a wild plant in the forests and grassy slopes of dry temperate and high mountainous regions (1850-3100m amsl), comprising regions of Kinnaur, Lahaul - Spiti, Pangi and Bharmaur of Himachal Pradesh. It is a small, grassy and perennial plant, which produces white or pink compound umbel of flowers on

the terminal and lateral stems during the third year of its life.

The Kala zeera grows wild in the forest areas and farmers collect the matured seeds from the forests areas and sell it on very high price (Rs. 2000/- -2500/- per Kg). In some parts of the state it cultivated for commercial purposes. In Shong village, District Kinnaur, Kalazeera is being cultivated as a cash crop on large scale. The demand of this prized spice is very high as it is difficult to find Kalazeera in the shops even after a month of harvesting. Matured seeds of cultivated and wild origin yield an oil rich in cuminaldehyde (27.3-34.1%), p-mentha-1,3-dien-7-al and p-mentha-1,4-dien- 7-al (29.6-36.8%). Kala Zeera is *Bunium persicum* which is widely grown in the dry temperate region of the Himachal Pradesh. It has a higher concentration of volatile oils responsible for its unique flavour and taste. Its stem is often hollow in the internodal region with secretary canals containing ethereal oils and resins. The



plant type of Kala zeera varies from dwarf (30 cm) to tall (80 cm) compact or spreading, moderately to highly branched, tuberous and perennial herb. The leaves are freely, pinnate (2-3), finely dissected and filiform. The flowers are small, white in colour with readily symmetrical small sepals, petals and stamens. Black cumin seeds contain essential oils rich in monoterpenal aldehydes; the main components are cuminaldehyde,



p-mentha-1,3-dien-7-al and p-mentha-1,4-dien-7-al; terpene hydrocarbons are -terpinene, p-cymene, -pinene.

Kala Zira (*Bunium pecticum*) has been found growing wild in the district of Kinnaur, Lahaul and Spiti and tehsil Pangi and Bharmour of Chamba. Realizing its importance as a spice and more valuable seed in Ayurvedic medicines, farmers can have a gross income of fifteen to twenty thousand rupees per hectare by growing kala zira. It, being a perennial crop, does not require planting year after year. Through experimental trials, it has been possible to domesticate kala zira in higher elevations (arid zone) ranging from 1,850 to 3,100 m above sea level. The natural habitats of the plant are low rainfall areas during summer (150-450 mm), accompanied with heavy snowfall in winter (2-5 m). After over-wintering, the bulbs start sprouting with the

onset of spring after the snow melts. Low rainfall during the vegetative, flowering and maturity stages help in developing flavour and quality seeds. The flower initiation occurs only after the bulbs attain three years of age. At present, only the local material is being multiplied. Collections from different zones are being made and the germplasm is under study to know if there is any genetic variability.

#### Soil and seed bed preparation:

Sandy loam soils are best suited for the proper development and growth of bulbs. Two to three ploughings are necessary. Mulching in November/December encourages early sprouting of bulbs.

#### Time of sowing

The optimum time for sowing of seed as also for transplanting of bulbs is from mid-October to mid-November.

#### Method of sowing and seed rate

(a) With seed: The seed @ 1-1.5 kg per ha should be sown in lines 20 cm apart and 2 to 2.5 cm deep.

(b) With bulbs: The bulbs @ 75-100 kg per ha are planted 10 cm deep and 20 cm apart. The space between the rows should be 30 cm.

#### Manuring:

Apply 60 kg nitrogen, 30 kg each of phosphorus and potash per hectare to obtain good crop. Also apply 20 tonnes FYM per hectare before last ploughing.

#### Inter-culture and Weeding:

Three to four hoeing and weeding are sufficient to control the weeds. Care should be taken to avoid injury to the bulbs.

#### Irrigation:

It requires 3-5 irrigations depending upon the soil type. The first irrigation should invariably be given when sprouting starts. At the time of

flowering and seed formation, irrigations should be applied to ensure better development of seeds.

#### Harvesting and threshing:

The crop flowers in the first week of June and matures by first fortnight of July. As the crop is susceptible to shattering, timely harvesting is more important to avoid losses. It should be harvested when the seeds turn light brown for commercial purpose and dark brown for using as seed. Threshing is done with sticks. Average yield is 8-10 q/ha.

#### Insect-pest:

**White grub:** The insect remains hidden in soil and cause heavy damage to seedlings immediately after germination. Apply 2 L Chloro-pyriphos 20 EC mixed with 25 kg of sand per ha at sowing time.

#### Disease

**Blight:** The foliage and branches of the plants become dark brown to black. The foliage drops down and the plants dry. Spray the plants with Indofil Z-78 or Indofil M-45 (0.2%) at fortnightly interval with the first appearance of the disease.

#### The healing Power and Curative Properties:

The fruit is a rich source of thymol. Thymol is used as an anthelmintic against hookworm infections and also as an antiseptic in many proprietary preparations. It is a stimulant, which increases the secretion and discharge of urine and relieves flatulence. It strengthens the functions of stomach and arrests any bleeding.

#### Digestive Disorders:

Kalazeera (Black Cumin) seeds are very useful in digestive disorders like biliousness, morning sickness, indigestion, atonics dyspepsia, diarrhea, malabsorption syndrome, and flatulent colic. One teaspoon of cumin

seeds is boiled in a glass of water and the decoction mixed with one teaspoon of fresh coriander leaf juice and a pinch of salt. This decoction can be taken twice daily after meals as a medicine for diarrhea.

#### Piles / Hemorrhoids:

Black cumin is beneficial in the treatment of piles or hemorrhoids. About 60 grams of the seeds, of which half should be roasted, should be ground together. Three grams of this flour should be taken with water.

#### Insomnia:

Cumin is valuable in relieving sleeplessness. A teaspoon of the fried powder of cumin seeds mixed with the pulp of a ripe banana can be taken at night to induce sleep.

#### Renal Colic:

Black cumin seeds mixed with caraway seeds and black salt is useful in renal colic. About 20 grams of cumin seeds, 12 grams of caraway seeds and 6 grams of black salt are ground together and mixed with a little vinegar. This mixture can be taken in doses of 3 grams every hour till relief is obtained.

#### Common Cold:

Dilute cumin water is an antiseptic beverage and very useful in common cold and fevers. To prepare cumin water, a teaspoon of cumin is added to boiling water, which is allowed to simmer for a few seconds and set aside to cool. If the cold is associated with sore throat, a few small pieces of dry ginger should be added to the water. It soothes throat irritation.

#### Problem of Breast Milk Secretion:

A decoction of cumin seeds mixed with milk and honey, taken once daily during the entire period of pregnancy helps the healthy development of the fetus, eases child-birth and increases the secretion of breast milk.

#### Amnesia:

Cumin seeds are valuable in amnesia or dullness of memory. Three grams of black cumin seeds are mixed with 12 grams of pure honey and licked to get rid of in this condition.

Boils:

Black cumin ground in water is applied as a paste over the boils with beneficial results.

Scorpion Sting:

Paste of the cumin seeds prepared with onion juice, applied over scorpion sting will retard the frequency of upbeats.

Other uses:

The cumin seed is extensively used in mixed spices and for flavoring curries, soups, sausages, bread and cakes. It is an ingredient of curry powder, pickles and chutneys. It is also used to some extent in Indian medicine as a carminative.

## The Pahadi Agriculture e-Magazine

Volume-3, Issue-12

### Premature Autumn Blooming in Apples of Kinnaur: Causes, Zone-wise Manifestation, Impacts and Management Strategies

Arun Kumar, Durga Prashad Bhandari and Deepika

Regional Horticultural Research & Training Station, Sharbo and Krishi Vigyan Kendra Kinnaur.

*Premature autumn blooming (PAB) in apple has become a significant physiological and climate-induced disorder in Kinnaur, Himachal Pradesh. The shift from traditional high-chill cultivars to low-chill, high-density systems has increased susceptibility to dormancy disruption. PAB intensity follows an altitudinal gradient, severe below 1900 m (Nichar), moderate at 2300–2650 m (Kalpa), and negligible above 2800 m (Pooh). The disorder is primarily driven by insufficient chilling, warm post-monsoon temperatures, persistent root activity, and hormonal imbalance. Long-term climatic data indicate rising winter minima (+1–2 °C), loss of up to 380 chilling hours, and an upward shift of the 1000-chill-unit isoline by 200 m. Consequences include 3–10 t ha<sup>-1</sup> yield loss, reduced fruit quality, and increased biennial bearing. Integrated chemical, cultural, and genetic management strategies offer effective mitigation under evolving Himalayan climates.*

#### Agro-climatic Zones of Kinnaur

Nichar Block (Lower Kinnaur: 1500–2300 m, Wet Temperate): - Annual rainfall 1000–1500 mm (monsoon-dominated), low to moderate snowfall, predominantly rainfed orchards, winter chilling <1000 h (0–7 °C), night temperatures go below 0 °C but not for prolonged periods.



Kalpa Block (Mid Kinnaur: 1800–3000 m, Transitional Zone): - Annual rainfall 400–900 mm, moderate to high snowfall, irrigation

through traditional snow-melt kuhls, chilling accumulation 1000–1400 h.

Pooh Block (Upper Kinnaur: 2100–3600 m, Dry Temperate/Cold Arid): - Negligible rainfall (<250 mm), heavy persistent snowfall, winter minimum –15 to –20 °C, chilling >1800–2500 h, irrigation entirely from snow-melt channels.

#### Evolution of Apple Cultivation Systems in Kinnaur

Apple cultivation in Kinnaur has evolved over seven decades from traditional, low-input systems to intensive, high-density, market-oriented orchards. Earlier orchards on seedling rootstocks with high-chill cultivars such as 'Royal Delicious' and 'Golden Delicious' were well adapted to the region's cold climate and maintained stable dormancy. Since the mid-1990s, replacement with low-chill, high-colour cultivars (e.g., Scarlet Spur-II, Gala, Fuji') and the adoption of high-

density planting systems using M-9, M-26, and Geneva rootstocks have enhanced productivity and fruit colour but increased physiological stress. These changes, coupled with warmer post-monsoon temperatures and altered canopy microclimates, have disrupted dormancy regulation, triggering premature autumn blooming. The structural shift toward low-chill, densely planted orchards has thus heightened Kinnaur's vulnerability to PAB, underscoring the need for zone-specific adaptive management strategies.

### **The Phenomenon of Premature Autumn Blooming**

Premature autumn blooming (PAB), known as "bahar phool" or off-season flowering, refers to the abnormal appearance of flowers between mid-October and late November, when apple trees are expected to remain in deep endodormancy. The flowers are morphologically normal but emerge 4–5 months before the natural spring bloom (March–April). The phenomenon is most prominent on water shoots, young laterals, and occasionally on older spurs. Field observations indicate a clear altitudinal gradient in severity: up to 30–40% of trees flower prematurely in lower Nichar (<1900 m), 10–30% in mid-elevation Kalpa, and only sporadic blooms occur in upper Pooh (>3000 m). These autumn flowers are biologically non-viable due to low night temperatures (<5 °C), lack of pollinator activity, and frost-induced fruitlet abortion within 10–15 days. Despite producing no fruit, PAB imposes a physiological cost, as each premature flower consumes significant stored carbohydrates and nutrients, thereby depleting reserves essential for the following spring's vegetative and reproductive growth.

### **Physiological Basis of Premature Autumn Blooming**

Premature autumn blooming in apple trees arises from disruptions in the physiological and hormonal mechanisms governing bud dormancy. Normally, buds enter endodormancy after summer under the control of abscisic acid (ABA), which suppresses premature growth. However, prolonged post-harvest warmth, excessive nitrogen fertilization, or pruning stress can reduce ABA levels, while increasing gibberellins (GA) and cytokinin's (CK), leading to early dormancy breakdown and untimely flowering. Incomplete chilling accumulation during mild autumns further contributes to the disorder, as buds remain metabolically active and may reinitiate floral development if temperatures rise again. In Kinnaur's lower elevations, PAB is triggered by a combination of (i) thermal stimuli, day temperatures of 20–28 °C after brief cooling; (ii) hydraulic activity, high soil moisture from monsoon rains maintaining root activity; and (iii) hormonal imbalance, root-derived cytokinin's and localized GA<sub>4</sub>/GA<sub>7</sub> synthesis stimulating premature bud growth. These conditions collectively override dormancy repression, prematurely activating floral meristem identity genes and converting vegetative buds into floral ones, which are subsequently lost for the next season. High post-harvest carbohydrate levels and elevated C/N ratios further support this premature growth. With ongoing climatic warming, repeated warm spells increasingly disrupt dormancy progression, especially in low-chill cultivars such as 'Anna' and 'Dorsett Golden', which possess inherently shallow dormancy regulation.

## Zone-wise Incidence and Primary Causes of Premature Autumn Blooming

The incidence of premature autumn blooming (PAB) in Kinnar exhibits a clear altitudinal gradient linked to climatic and management factors. In Nichar Block (1500–2300 m), PAB is severe and recurrent, particularly between 1600–1950 m. Flowering may begin as early as late September and persist until December. The primary causes include chronic chilling deficits (550–750 h below 7 °C), persistent soil warmth and moisture from heavy monsoon rainfall (>1200 mm), and extended warm spells in October (26–31 °C). The problem is compounded by cultivar–site mismatch, where low-chill, high-colour cultivars (e.g., Scarlet Spur-II, Jeromine) and vigorous rootstocks (seedling, MM-111) maintain prolonged physiological activity, delaying dormancy onset. In Kalpa Block (2300–3000 m), the disorder is moderate but increasing, especially between 2300–2650 m and on south- or west-facing slopes. Historically adequate chilling (1100–1400 h) is now declining due to microclimatic warming, deforestation, and urbanization-related heat retention. Reduced snowfall, widespread use of low-chill cultivars, late nitrogen fertilization, and continued irrigation until late October prevent proper dormancy induction, sustaining root and shoot activity. In contrast, Pooh Block (>2800 m) experiences rare or negligible PAB. Abundant chilling (>2000 h) and persistent snow cover from mid-November to mid-April ensure stable dormancy. Occasional flowers occur only near settlements due to localized heat-island effects, but even in low-chill cultivars, incidence remains minimal (5–10 flowers per orchard). Thus, PAB severity in Kinnar

strongly correlates with elevation, local microclimate, and orchard management intensity, with lower zones being the most



physiologically vulnerable.

## Consequences on Yield and Fruit Quality

Post-autumn bloom in apple trees causes multi-dimensional losses affecting yield, fruit quality, and long-term orchard health. The premature opening of 500–1500 flowers  $\text{ha}^{-1}$  in severely affected areas like Nichar leads to an estimated 3–10 t  $\text{ha}^{-1}$  potential yield loss. Each off-season flower consumes stored carbohydrates, causing 18–32% depletion in reserves, which weakens the subsequent growth cycle. The disturbance of normal dormancy results in weak and uneven spring bud break, with flowering reduced by 30–45% and extended over 18–22 days, producing staggered fruit maturity and smaller, less uniform fruits. Fruit quality declines due to reduced size, poor colour development, and lower anthocyanin synthesis, diminishing market value. Trees exhibit strong biennial bearing tendencies, with the index rising from 0.2–0.3 to 0.7–0.9, and show increased susceptibility to fire blight and *Alternaria* infections due to autumn blossoms.

Long-term climatic records (1975–2025) confirm that rising winter temperatures, declining chilling hours (280–380 h in Nichar; 120–180 h in Kalpa), delayed snowfall, and

the upward shift of the 1000-chill-unit line by 200 m are intensifying PAB. The surge in October–November warm spells (from 1–2 to 6–9 per decade) disrupts dormancy initiation and induces premature flowering. These shifts highlight regional warming and altered temperature patterns as key drivers of PAB, posing a serious threat to apple yield stability and quality in the temperate Himalayas.

### Management Strategies

The management of post-autumn bloom in apple orchards requires an integrated approach combining chemical, cultural, and genetic measures. Among chemical interventions, Pacllobutrazol (PBZ) soil drenching in early September is most effective in lower Kinnaur, reducing autumn bloom by 78–92% and advancing spring flowering by 7–10 days. Hydrogen cyanamide (Dormex/Hi-Cane) applied in mid-January helps synchronize bud break in orchards showing residual bloom (>30%), while Ethephon + urea sprays by mid-October promote uniform defoliation. Foliar applications of 0.2% boron and 0.5% zinc sulphate strengthen buds and enhance winter hardiness. Cultural strategies include halting nitrogen fertilization after 10 August, withholding irrigation or performing root pruning during September–October to promote dormancy, and maintaining 12–15% high-chill polliniser trees in new plantations. Mechanical summer hedging effectively removes water shoots that might flower prematurely. From a genetic standpoint, adopting heat-tolerant and early-dormancy-inducing rootstocks such as Geneva 41, Geneva 935, and M-9 T337, and top-working

older seedling trees with high-chill scions in upper belts are sustainable long-term solutions. Collectively, these strategies mitigate the physiological and climatic triggers of post-autumn bloom and stabilize yield and fruit quality.

Premature autumn bloom in Kinnaur's apple orchards represents a clear symptom of climate-driven dormancy disruption aggravated by modern cultivation practices and genetic shifts toward low-chill, high-density systems. The phenomenon's severity follows a distinct altitudinal pattern, being most acute in lower Nichar and minimal in the cold-arid zones of Pooh, where natural chilling remains adequate. Physiologically, PAB reflects a breakdown in hormonal and thermal regulation of bud dormancy caused by chilling deficits, warm autumn spells, and prolonged root activity. The resulting yield and quality losses threaten the economic resilience of apple farming in lower and mid-elevation belts. Long-term climatic trends—rising winter minima, delayed snowfall, and frequent late-autumn heat events—confirm that PAB is not a transient anomaly but an emerging syndrome of regional climatic warming. Effective mitigation requires a multi-pronged strategy, integrating chemical regulation (PBZ, hydrogen cyanamide), nutrient and water management, summer hedging, and deployment of heat-tolerant, early-dormancy-inducing rootstocks. Sustained monitoring, localized chill modelling, and genetic adaptation are essential to safeguard Kinnaur's apple heritage under evolving Himalayan climates.

## The Pahadi Agriculture e-Magazine

Volume-3, Issue-12

# The Journey of Safflower: Cultivation Practices and its Significance Today

Ashutosh Bharat Gawande<sup>1</sup>, Vivek Kumar<sup>2\*</sup>

<sup>1</sup> M.Sc. ( Scholar), Department of Genetics and Plant Breeding, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, UP- 211007

<sup>2</sup>\* Project Associate, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, UP

**Safflower** (*Carthamus tinctorius L.*) is another of the oldest domesticated crops that have been used over 4,000 years. The safflower, which started in China during ancient times and expanded along the ancient trade routes, developed into a useful modern crop of oil-bearing plants, which is used as a medium of dye and medicinal properties. Its young orange-red flowers had been used as a dye in carthamin, the seeds as cooking and medical oil, and the different parts of the plant had a role in traditional medicine (Nazir *et al.*, 2021). Even nowadays, safflower is significant because of its versatile uses and excellent versatility. It has different genotypes with oil composition varying up to 70-80 percent linoleic acid and other genotypes with 75-85 percent oleic acid, which have the advantages of providing omega-6 fatty acids, increased oxidative stability, and cardioprotective properties. The natural antioxidants also enhance its nutritional content and shelf life and the oil has many applications in food, cosmetics, paints, varnishes and biofuel manufacture. The petals and leaves also contain bioactive flavonoids and alkaloids that contribute to medicinal value. Through its long history, evolving cultivation practices, and expanding industrial and health-related uses, safflower continues to stand as a resilient and significant crop in modern agriculture.

**Global Safflower Distribution and Production**  
Safflower is cultivated across several dry and semi-arid regions of the world and, compared with major oilseeds, its production remains geographically limited. Global safflower cultivation is modest, with total annual production generally reported in the range of several hundred thousand tonnes, largely concentrated in countries such as Kazakhstan, Mexico, India, and the United States. In India, safflower is primarily grown in the Deccan Plateau, where Maharashtra stands as the leading producer due to its extensive acreage and long tradition of safflower research and development. Karnataka, with its widespread dryland farming systems, and Madhya

Pradesh, particularly the Malwa region, also contribute significantly to national production (Ponakala *et al.*, 2024; Magodia *et al.*, 2024). Although yields vary widely depending on rainfall, soil conditions, and management practices, safflower continues to be an important crop in regions where its tolerance to drought and marginal soils offers a clear advantage over other oilseeds.

### Plant morphology

Safflower (*Carthamus tinctorius L.*) is an annual herbaceous plant characterized by an erect, bushy growth habit with multiple branches arising from the main stem. Its leaves are typically lanceolate to ovate, rigid in texture, and often spiny along the margins,

showing considerable variation across genotypes. The inflorescences (capitula) are borne at the terminal ends of branches and contain numerous tubular florets that range in color from yellow-orange to deep red, each developing a single seed (achene/cypsela). Important morphological traits such as hull thickness, drought tolerance, and anatomical modifications in leaf and seed tissues—including variations in vascular, mesophyll, and epidermal structures as well as mutant hull frameworks—have been documented through breeding and taxonomic studies. Safflower completes its life cycle within several months and exhibits protandry, a condition in which the male floral parts mature earlier than the female parts, facilitating insect-mediated outcrossing despite the species being considered largely self-compatible. Flowering duration, pollination efficiency, and seed set are influenced by both the plant's reproductive biology and prevailing environmental factors (Rammal et al., 2009; Bahrami et al., 2013)

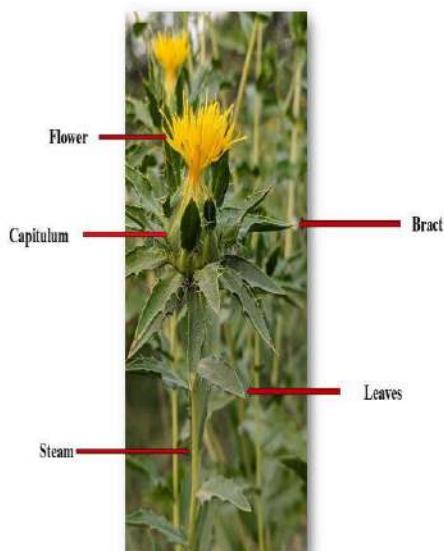



Fig. 1 Morphological parts of safflower

## Growing Environment and Agronomic Adaptability

Safflower is well adapted to semi-arid and dry land regions, performing best when sown in soils with temperatures of 6–8 °C at a depth of 10 cm. It prefers well-drained loamy soils but tolerates sandy and moderately saline conditions better than many other oilseeds. Field studies show that safflower can withstand significant soil and water salinity, giving it a distinct advantage in degraded or salt-affected landscapes. Its resilience under low rainfall, deep rooting habit, and ability to utilize stored soil moisture make it a dependable crop in water-limited environments.

## Cultivation Practices

Optimal sowing time varies by region, but mid to late October is generally ideal for tropical and subtropical zones, while Mediterranean areas may extend sowing into November based on rainfall and temperature patterns. Effective crop establishment relies on fungicidal seed treatment and, when needed, seed priming to enhance germination under stress. Typical plant populations are achieved using around 60 kg/ha seed rate and row spacing of 20–45 cm, with closer spacing supporting improved canopy development. Good field preparation and weed control during early growth are essential for maximizing yield potential.

## Nutrient and Water Management

Safflower responds well to balanced fertilization, particularly nitrogen and phosphorus, while integrated nutrient management using organic amendments and beneficial soil microbes improves soil health and crop productivity. Although safflower is drought tolerant, targeted irrigation at

flowering and seed-filling stages significantly enhances seed weight and oil accumulation. The crop's nitrogen uptake is closely linked with moisture availability, and maintaining an optimal balance between water supply and nutrient application is key to achieving consistent yields.

### **Crop Protection and Harvesting**

Safflower is vulnerable to pests such as aphids and diseases like *Alternaria* blight and wilt, making integrated pest management essential. Crop rotation, resistant varieties, and conserving natural predators help reduce reliance on chemical pesticides. Harvesting methods depend on crop type and resources—combine harvesting is efficient but requires machine adjustments to avoid seed loss, while manual harvesting is suitable for spiny cultivars or where petals are collected for value-added products. Yield can vary widely, from less than 1 t/ha in marginal dryland conditions to more than 3 t/ha under favourable management.

### **Medicinal Properties and Traditional Uses**

Safflower has a long and respected history in Traditional Chinese Medicine and various folk healing systems, particularly for treating conditions related to women's health and blood circulation. It has traditionally been consumed as tea, used in powdered form, or administered as injectable preparations to alleviate menstrual discomfort, postpartum pain, and poor blood flow. Its therapeutic value is linked to a diverse group of bioactive compounds—especially quinochalcones such as hydroxysafflor yellow A, along with flavonoids, polysaccharides, lignans, serotonin derivatives, and seed oils rich in linoleic and oleic acids. These constituents are widely regarded as the primary contributors to

safflower's medicinal effects (Adamska *et al.*, 2021; Wu *et al.*, 2021). Modern formulations, including safflower-based injections such as Danhong, are used alongside standard treatments for ischemic stroke, acute coronary syndromes, and microvascular disorders. Clinical findings report improvements in several symptoms and biomarkers, although the quality of evidence varies across studies. Additionally, safflower yellow, when combined with conventional therapy, has shown potential benefits in early-stage diabetic nephropathy by improving kidney-related markers (Cheng *et al.*, 2024).

### **Modern Significance and Future Potential**

Today, safflower holds renewed importance due to its adaptability, nutritional oil quality, and multiple industrial applications. High-linoleic oil supports dietary omega-6 requirements, while high-oleic types offer excellent oxidative stability for both food and industrial use. Its ability to grow where few other commercial oilseeds survive makes it a strategic crop for regions facing drought, salinity, and climate variability. Advances in breeding for oil quality, disease resistance, and stress tolerance continue to expand safflower's potential as a valuable crop for sustainable and diversified farming systems.

### **Conclusion**

Safflower's long journey from an ancient dye plant to a modern multipurpose oilseed highlights its remarkable resilience, versatility, and enduring agricultural value. Its ability to thrive in dry lands, withstand salinity, and utilize deep soil moisture makes it a strategic crop for regions increasingly challenged by climate variability. The crop's morphological diversity, rich phytochemical profile, and wide industrial applicability—

from edible oils and natural colorants to medicinal formulations—underscore its significance far beyond traditional uses. Modern breeding efforts focused on improving oil composition, yield stability, and resistance to biotic and abiotic stresses continue to enhance its relevance in contemporary agriculture. As global interest shifts toward sustainable cropping systems, resilient oilseeds, and plant-derived health-

promoting compounds, safflower emerges not only as a heritage crop but also as a promising candidate for future-oriented farming. Its unique combination of agronomic adaptability, nutritional and therapeutic value, and economic potential ensures that safflower will remain an important contributor to agricultural innovation, rural livelihoods, and global oilseed markets in the years ahead.

## References

1. Adamska, I., & Biernacka, P. (2021). Bioactive substances in safflower flowers and their applicability in medicine and health promoting foods. *International Journal of Food Science*. <https://doi.org/10.1155/2021/6657639>
2. Bahrami, F., Arzani, A., & Amini, H. (2013). Leaf anatomical characteristics in safflower genotypes as affected by drought stress.
3. Cheng, H., et al. (2024). Genetic diversity, clinical uses, and phytochemical and pharmacological properties of safflower (*Carthamus tinctorius* L.): An important medicinal plant. *Frontiers in Pharmacology*. <https://doi.org/10.3389/fphar.2024.1374680>
4. Magodia, H. A., Jagasia, P. V., & Kale, A. P. (2024). Effect of different sources and levels of sulphur along with foliar spray of micronutrients on growth, yield and nutrient uptake by safflower (*Carthamus tinctorius* L.). *ShodhKosh: Journal of Visual and Performing Arts*. <https://doi.org/10.29121/shodhkosh.v5.i6.2024.2186>
5. Nazir, M., Arif, S., Ahmed, I., & Khalid, N. (2021). Safflower (*Carthamus tinctorius*) seed. In *Functional and Preservative Properties of Food*. <https://doi.org/10.1007/978-981-15-4194->
6. Ponakala, P., Garg, K. K., & Anantha, K. H. (2024). Water use and yield response of rainfed safflower (*Carthamus tinctorius* L.) in Vertisols with varying soil depths. *Agronomy Journal*. <https://doi.org/10.1002/agj2.21581>
7. Rammal, H., Younos, C., Bouayed, J., Chakou, A., Necerbey, N., & Soulimani, R. (2009). Aperçu ethnobotanique et phytopharmacologique sur *Carthamus tinctorius* L. *Sozial- und Präventivmedizin*. <https://doi.org/10.1007/s10298-008-0361-8>
8. Wu, X., et al. (2021). Extraction, structures, bioactivities and structure–function analysis of the polysaccharides from safflower (*Carthamus tinctorius* L.). *Frontiers in Pharmacology*. <https://doi.org/10.3389/fphar.2021.767947>

## हिमाचल प्रदेश में कचालू का झुलसा रोग – प्रकोप एवं प्रबंधन

<sup>1</sup>अरुणेश कुमार, <sup>2</sup>मीनू गुप्ता, <sup>3</sup>सतीश कुमार शर्मा, <sup>4</sup>सौरव शर्मा एवं <sup>5</sup>रानू पठानिया

<sup>1,2&3</sup>पादप रोग विज्ञान विभाग, डॉ. यशवंत सिंह परमार बागवानी एवं वानिकी विश्वविद्यालय, नौणी, सोलन

<sup>4&5</sup>स्थ्य विज्ञान विभाग, चौधरी सरकन कुमार हिमाचल प्रदेश कृषि विश्वविद्यालय, पालमपुर

**कचालू** (*Colocasia esculenta L.*) हिमाचल के स्थानीय भोजन प्रणाली में महत्वपूर्ण है। इसके कंद और पत्तियाँ, पारंपरिक व्यंजनों में सब्जी, अचार आदि के रूप में प्रयोग होती हैं। यह एक स्थानीय उपयुक्त फसल है, जिसे छोटे किसान आसानी से उगा सकते हैं। इसका उत्पादन हिमाचल प्रदेश के विभिन्न जिलों (जैसे कांगड़ा, हमीरपुर, बिलासपुर) में कंद (corm / cormel) और पत्तियों दोनों के लिए होता है। कंद स्टार्च का स्रोत है तथा पत्तियाँ पोषक तत्वों (विटामिन, खनिज, रेशे) से भरपूर होती हैं। उदाहरण के लिए, पत्तियाँ और कंदों में ऐश -सामग्री, शर्करा, ऊर्जा आदि में विभिन्नता है। हिमाचल प्रदेश के मध्य पहाड़ी और उप पहाड़ी क्षेत्रों में अरबी/कचालू अच्छी तरह से उगती है। (अरबी/कचालू का झुलसा रोग) एक गम्भीर रोग है जो (अरबी/कचालू) के पौधों को प्रभावित करता है। इस रोग का मुख्य कारण एक कवकीय फक्फूद है। हिमाचल में झुलसा रोग लगभग हर मौसम में और विशेषकर बरसात के समय या जब पत्तियों पर पानी की बूंदें ज्यादा हों, तीव्र रूप से फैलता है। रोग का प्रमुख स्रोत जमीन में बचे पुराने कंद, पौधे के बच जाने व सूखे पत्ते-तने होते हैं। ये प्राइमरी संक्रमण का कारण बनते हैं। पत्तियों की भीगना एक महत्वपूर्ण पर्यावरणीय कारक है; यदि पत्तियाँ लगातार अधिक समय तक गीली रहें तो रोग जल्दी बढ़ता है।

### रोग का कारक:

यह रोग फाइटोफ्थोरा कोलोकैसिया (*Phytophthora colocasiae*) नामक जलकवक के कारण होता है।

### रोग के लक्षण:

#### पत्तियों पर गीले धब्बे:

- प्रारंभ में पत्तियों पर छोटे-छोटे
- पानी जैसे गीले धब्बे दिखाई देते हैं। ये धब्बे बाद में भूरे या काले रंग में बदल जाते हैं।

**तेजीसे फैलाव:** नमी या वर्षा के मौसम में रोग बहुत तेजी से पूरी पत्तियों में फैलता है। एक पत्ती से दूसरी पत्ती तक संक्रमण फैलता है।

#### पत्तियों पर रोग के लक्षण

### पत्तियों का मुरझाना:

संक्रमित पत्तियाँ मुरझाने लगती हैं और बाद में सूख जाती हैं। पत्तियाँ किनारों से झुलसने लगती हैं।

### डंठल का काला पड़ना:

गम्भीर संक्रमण में डंठल (पत्तियों का तना) काले रंग का हो जाता है और गलने लगता है।

**कंद सड़ना:** अत्यधिक संक्रमण होने पर कंद (जड़ भाग) भी सड़ने लगते हैं, जिससे पूरी फसल बर्बाद हो सकती है।

**सफेद फक्फूदीया कवक वृद्धि:** नम मौसम में संक्रमित भागों पर सफेद रंग की फक्फूद दिखाई दे सकती है।

### रोग का जीवन चक्र:

- प्राथमिक संक्रमण स्रोत: संक्रमित कंद, पौधों के अवशेष, और मिट्टी में मौजूद रोग जनक (*Phytophthora colocasiae*) रोग का प्रमुख स्रोत होते हैं। रोग जनक ऊस्पोर, स्पोरेंगिया और जूस्पोर के रूप में मिट्टी और पौधे के अवशेषों में जीवित रहता है।
- संक्रमण की शुरुआत: जब मौसम नम और गर्म होता है (मानसून के दौरान), तो ये बीजाणु सक्रिय हो जाते हैं। बारिश या सिंचाई से गीली पत्तियों पर ये स्पोर फैलते हैं।
- संवहन और प्रसार: रोग जनक पानी के छींटों, बारिश, और संक्रमित औजारों या हाथों से एक पौधे से दूसरे पौधे तक फैलता है। जूस्पोर तैरकर पत्तियों या डंठलों की सतह पर पहुँचते हैं और वर्ही से पौधे में प्रवेश कर जाते हैं।
- संक्रमण और लक्षण: पत्तियों पर गीले, भूरे धब्बे दिखाई देने लगते हैं। धीरे-धीरे डंठल और कंद भी सड़ने लगते हैं। बीमारी तेजी से खेत में फैल जाती है यदि नमी अधिक हो।
- रोग जनक का जीवित रहना: रोग जनक बिना में ज़बान पौधे के भी मिट्टी में ऊस्पोर के रूप में जीवित रह सकता है। संक्रमित पौध अवशेष और कंदों में भी यह अगले सीजन तक बना रहता है।

#### रोग के लिए अनुकूल परिस्थितियाँ:

- अधिक नमी और वर्षा: लंबे समय तक नमी रहने पर यह रोग तेजी से फैलता है। लगातार बारिश या ओस

#### रोग का प्रबंधन:

- फसल चक्र अपनाएं-अरबी को हर साल एक ही खेत में न उगाएं। कम से कम 2-3 साल तक दूसरी फसल लगाएं जिससे रोगजनक मिट्टी में न पनपे।

गिरने की स्थिति में पत्तियाँ गीली रहती हैं, जो संक्रमण को बढ़ावा देती हैं।



- उच्च तापमान: 20°C से 30°C के बीच का तापमान रोग के विकास के लिए अनुकूल होता है। गर्म और नम मौसम सबसे ज्यादा खतरनाक होता है।
- पत्तियों की गीलापन अवधि: यदि पत्तियाँ 10-12 घंटे या उससे अधिक समय तक गीली रहें, तो रोग फैलने की संभावना कई गुना बढ़ जाती है।
- कम वायु संचलन: घने पौधे या खेतों में जहां हवा का आवागमन कम होता है, वहां नमी ज्यादा समय तक बनी रहती है, जिससे रोग को अनुकूल माहौल मिलता है।
- संक्रमित पौध अवशेष या कंद: मिट्टी में पहले से मौजूद रोग जनक या संक्रमित कंद, अगले सीजन में रोग फैलाने का स्रोत बनते हैं।
- लगातार एक ही स्थान पर खेती: एक ही फसल को बार-बार उगाने से रोग जनक मिट्टी में बना रहता है और बीमारी की तीव्रता बढ़ जाती है।
- सांस्कृतिक प्रबंधन:
- साफ-सफाई बनाए रखें- संक्रमित पत्तियाँ और पौधे के अवशेष खेत से हटा दें और जला दें। खेत की सफाई और जल निकासी व्यवस्था ठीक रखें।

- अच्छी जल निकासी- खेत में पानी जमा न होने दें। जल भराव इस रोग को तेजी से फैलाता है।
- संतुलित पोषण प्रबंधन- पौधों को ज़रूरत के अनुसार नाइट्रोजन, फॉस्फोरस और पोटाश दें। अत्यधिक नाइट्रोजन भी रोग बढ़ा सकता है।

#### रासायनिक प्रबंधन:

रोग के लक्षण दिखाई देने पर, पत्तियों पर निम्नलिखित फूलनाशकों का छिड़काव करें:

| दवा का नाम            | मात्रा/लीटर पानी | उपयोग का समय                   |
|-----------------------|------------------|--------------------------------|
| Mancozeb 75% WP       | 2.5–3 ग्राम      | हर 10–12 दिन में दोहराएं       |
| Metalaxy 1 + Mancozeb | 2.5 ग्राम        | आरंभिक लक्षणों पर छिड़काव करें |
| Copper oxychloride    | 3 ग्राम          | पत्तियों पर संक्रमण दिखने पर   |

- विशेषकर बारिश के मौसम में 2-3 बार छिड़काव करें।
- जैविक प्रबंधन: ट्राइकोडर्मा हर्जीएनम एक लाभकारी फूलनाशक है जो रोगजनक को नष्ट करता है। इसे खेत में मृदा के साथ मिलाया जा सकता है। इसी प्रकार सूडोमोनस फ्लोरेसेंस एक जैविक बैक्टीरिया है जो पौधों की रोग
- प्रतिरोधक क्षमता को बढ़ाता है और रोग जनकों को दबाता है।
- प्रतिरोधी किस्मों का चयन: जिन क्षेत्रों में यह रोग बार-बार होता है, वहाँ रोग-प्रतिरोधी किस्मों का चयन करें, यदि उपलब्ध हों।

## The Pahadi Agriculture e-Magazine

Volume-3, Issue-12

### सब्जियों की स्वस्थ नर्सरी तैयार करने हेतु भूमि एवं बीज शोधन की विधियाँ

स्वागत रंजन बेहेरा<sup>1</sup>, उमा पंत<sup>1</sup>, अंजना सुरेश<sup>1</sup>, अभय शर्मा<sup>2</sup> और उधम सिंह<sup>3</sup>

<sup>1</sup>सब्जी विज्ञान विभाग, कृषि महाविद्यालय, <sup>2</sup>पादप रोग विज्ञान विभाग, कृषि महाविद्यालय, गोविन्द बल्लभ पंत कृषि एवं प्रौद्योगिक विश्वविद्यालय, पंतनगर, उत्तराखण्ड

<sup>3</sup>सब्जी विज्ञान विभाग, उद्यान महाविद्यालय, बांदा कृषि एवं प्रौद्योगिकी विश्वविद्यालय, बांदा, उत्तर प्रदेश सब्जियों की अच्छी पैदावार हेतु उन्नतशील किस्मों के साथ स्वस्थ एवं रोगमुक्त पौध उगाना आवश्यक होता है। पौधशाला (नर्सरी) में एक से डेढ़ इंच के पौध का जड़ गलन बिमारी से ग्रसित होना एक सामान्य बात है, जिसमें क्यारी का लगभग 80 प्रतिष्ठत पौध नष्ट हो जाता है। हानिकारक जीवाणु एवं फफूँद से बचाव के लिए भूमि एवं बीज शोधन अत्यन्त आवश्यक है, अन्यथा मृदा में पहले से उपस्थित रोगाणु पौधों को क्षति पहुंचाते हैं, जो न केवल पौध तैयार करने तक ही सीमित रहती हैं बल्कि खेत में रोपण के पश्चात भी पौधों को हानि पहुंचाते हैं। किसान भाईयों को पौध उगाने की वैज्ञानिक विधि का प्रयोग करना चाहिए ताकि क्यारी का एक भी पौधा रोग या अन्य कारकों से नष्ट न हो पाए।

#### भूमि शोधन

भूमि शोधन कई प्रकार से किया जा सकता है: (1) मृदा सौर्योकरण (सोलराइजेशन) विधि सूर्य के प्रकाश से पौधशाला की मिट्टी को शोधन करने को कहते हैं। इस विधि में पौधशाला में, जहां पौध उगानी हो, 3 × 1 वर्ग मीटर क्यारी बनाकर हल्की सिंचाई करके थोड़ा गिला कर लें, ताकि मिट्टी में नमी बनी रहे। तत्पश्चात पारदर्शी 200 गेज की पॉलिथीन से ढककर चारों तरफ के किनारे मिट्टी से दबा देते हैं ताकि पॉलिथीन के अंदर से हवा तथा वाष्प बाहर न निकले। यह कार्य 15 अप्रैल से 15 जून तक किया जा सकता है। इस तरह से इसे 4–6 सप्ताह तक छोड़ देते हैं, जिससे पॉलिथीन के अंदर का तापमान 48–52 डिग्री सेल्सियस तक बन जाता है, जिससे पौधशाला के पौधों को रोगों से बचाया जा सकता है।



#### (2) जैविक विधि

पौधशाला में ट्राइकोर्डर्मा की विभिन्न प्रजातियाँ, स्यूजोमोनास फ्लोरोसेन्स तथा एस्परगिलस नाइजर का प्रयोग बीज एवं भूमि शोधन में किया जा सकता है, परंतु जैव नियंत्रक के उपयोग करने के लिए कई सावधानियों की जरूरत पड़ती है: सर्वप्रथम, जैव नियंत्रक उस क्षेत्र विशेष का होना चाहिए जिससे उसकी मिट्टी में बढ़वार अच्छी तरह हो।

इसके लिए पौधशाला में कम्पोस्ट तथा अन्य जैविक खाद की पर्याप्त मात्रा होनी चाहिए, जिसमें जीवाणुओं की अच्छी तरह वृद्धि हो सके। जिस भी जीव नियंत्रक पदार्थ का प्रयोग करना है, उसमें जीवित तथा सक्रिय जीवाणु की पर्याप्त मात्रा होनी चाहिए।

इसके प्रयोग करने के बाद पौधशाला में वर्षा एवं धूप से बचाव करने की व्यवस्था होनी चाहिए।

उस पौधशाला में किसी भी रसायन का प्रयोग बिना तकनीकी जानकारी के नहीं करना चाहिए। जैव नियंत्रक मिलाते समय पौधशाला की मिट्टी में पर्याप्त नमी होनी चाहिए लेकिन मिट्टी गिली अवस्था में भी न हो।

जैव नियंत्रक का प्रयोग दो तरह से किया जाता है। पहले पौधशाला को अच्छी तरह से तैयार करके उसमें तैयार किया मिश्रित जैव नियंत्रक पदार्थ 10–25 ग्राम प्रति वर्ग मीटर की दर से मिट्टी में अच्छी तरह मिला दें, और उसके एक या दो दिन बाद बीज की बुआई करें। दूसरी विधि में बीज को शुद्ध जैव नियंत्रक से भी शोधित किया जाता है लेकिन यह प्रयोगशाला में किसी अनुभवी व्यक्ति से ही करवाना चाहिए। बीज बुआई करने के बाद पौधशाला को अधिक तापमान और अधिक वर्षा से बचाना चाहिए।

### (3) रासायनिक विधि

जैविक पदार्थ की उपलब्धता न होने पर फफूँदनाशक रसायनों से भूमि का शोधन करते हैं। कैप्टान या थीरम नामक दवा की 5 ग्राम मात्रा प्रति वर्ग मीटर पौधशाला की क्यारी में डालकर मिट्टी में अच्छे से मिलाने के बाद क्यारी में बीज की बुआई करते हैं। इससे पौधशाला में

लगने वाले फफूँद जनित रोगों, जैसे जड़ गलन (डैम्पिंग ऑफ), से सुरक्षा मिलती है।

### बीज शोधन

पौधशाला में बुआई से पूर्व बीज शोधन कैप्टान या थीरम नामक दवा की 3 ग्राम मात्रा प्रति कि.ग्रा. बीज की दर से करें।

मिर्च तथा बैंगन के बीज का शोधन कार्बन्डाजिम या बाविस्टिन 2.5 ग्राम प्रति कि.ग्रा. बीज से बहुत लाभकारी है।

दवा को बीज में अच्छी तरह मिलाने के लिए मिट्टी या लकड़ी के ढक्कनदार बर्तन का प्रयोग करें। दवा व बीज बर्तन में डालकर ढक्कन बंद कर दें और अच्छी तरह से हिलाएं ताकि दवा बीज के चारों तरफ अच्छी तरह से चिपक जाए।

कुछ सब्जियाँ जैसे टिंडा, करेला इत्यादि में छिलके कठोर होते हैं। अतः इनको कैप्टान 0.25 प्रतिष्ठत (2.5 ग्राम प्रति लीटर पानी में) घोल में भीगोकर बुआई करने से फफूँद जनित बीमारीयों का प्रकोप कम हो जाता है।

भीगोने की अवधि करेला में 24–36 घंटे, चिचिंडा, तरबूज व टिंडा में 10–12 घंटे, खीरा, ककड़ी, खरबूज, कट्टा इत्यादि में 3–4 घंटे व लौकी, नेनुआ, तोरई तथा पेठा में 6–8 घंटे उपयुक्त हैं।



सब्जी की विभिन्न किस्मों की खेती किए जाने की संभावनाएँ भारत में विश्व के अधिकांश देशों की तुलना में सबसे से अधिक हैं। लेकिन व्यापक उत्पादन के बावजूद, भारत के सब्जी उत्पादों की अंतर्राष्ट्रीय बाजार में निर्यात के लिए छवि नहीं बन पाई है। इसके कई कारण हो सकते हैं परन्तु सब्जी उत्पादों में कीटनाशकों के अवयव अत्यधिक मात्र में पाया जाना प्रमुख है। सब्जी उत्पादन की पूरी क्षमता हासिल करने में अनेक कीट नाशीजीवों, बीमारियों, सूत्र- कृमियों तथा कुटकी के प्रकोप के कारण होने वाला उच्च आर्थिक नुकसान एक प्रमुख बाधा है। यह आकलन है कि सब्जियों में नाशीजीव प्रकोप के कारण 30-40 प्रतिशत तक पैदावार नुकसान होता है जिससे प्रतिवर्ष करोड़ों रूपये की हानि होती है। नुकसान को कम करने और इन नाशीजीवों का नियंत्रण करने के उद्देश्य से किसान सामान्यतः रासायनिक दवाईयों का अंधाधुंध छिड़काव करते हैं जिससे रसायनों के अवशेष फसल उत्पादों पर बने रह जाते हैं जिससे पर्यावरण तथा स्वास्थ्य को अत्यधिक नुकसान होता है। अतः सब्जी फसलों में जहरीली दवाईयों के प्रयोग को कम करने के उद्देश्य से नाशीजीव समस्याओं का प्रबंधन करने हेतु एक ऐकीकृत पद्धति की आवश्यकता है। विभिन्न सब्जी फसलों में लगने वाले हानिकारक कीट, रोग, उनके उपाय व समन्वित कीट प्रबंधन प्रणाली निम्न प्रकार से है:-

## 1. टमाटर

टमाटर की फसल में वैधिक ऐकीकृत नाशीजीव प्रबंधन युक्तियां

- ❖ आद्र गलन आदि को रोकने तथा अच्छी जल निकासी के लिए जमीन से 10 सें.मी. ऊंची क्यारी बनाकर ही नर्सरी तैयार करें।
- ❖ नर्सरी की बुवायी से पहले मिट्टी को 0.45 मिमी. मोटी पालीथीन शीट से 2-3 सप्ताह तक ढक्कर, मिट्टी का सूर्य तापीकरण करें। ऐसा करने से मृदाजनित कीट रोगों के नियंत्रण में सहायता मिलती है।
- ❖ ट्राइकोडर्मा की सक्षम स्ट्रेन (150 ग्राम) को 3 कि.ग्रा. गोबर की खाद में मिलाएं और 7-14 दिनों के लिए संवर्धन के लिए छोड़ दें व उसके पश्चात 3 वर्ग मीटर क्यारी में ट्राइकोडर्मा संबन्धित खाद को मिट्टी में मिला दें।
- ❖ आद्र-गलन के नियंत्रण हेतु 10 ग्रा/कि.ग्रा. बीज ट्राइकोडर्मा या कैप्टान 50 डब्ल्यूपी के साथ 0.25 प्रतिशत स.त. की दर से बीजोपचार करें। आवश्यकता होने पर कैप्टान 50 डब्ल्यूपी 0.25 प्रतिशत की दर से मिट्टी में मिला दें।
- ❖ टमाटर नर्सरी से 20 दिन पूर्व अलग से गेंदा फूलों की नर्सरी लगाएं।

## मुख्य फसल

- ❖ पर्ण सुरंगक, चेपा तथा सफेद मक्खी के नियंत्रण हेतु पौध रोपण के 25 दिन पश्चात नीम अरक 5 प्रतिशत का छिड़काव करें।
- ❖ टमाटर की पौध रोपने के 28,35 एवं 42 दिनों के पश्चात एचएनपीवी (250 ली. /है) का शाम के समय छिड़काव करें। सूर्य की अल्ट्रा-वायलेट किरणों से अपघटन रोकने के लिए 2 प्रतिशत गुड़ मिलाकर छिड़काव करें।
- ❖ अगेती एवं पछेती झुलसा रोग के नियंत्रण हेतु आवश्यकतानुसार सायमोक्सानिल (8 प्रतिशत) + मेंकोजेब 64 प्रतिशत डब्ल्यू. पी. (0.3 प्रतिशत) या टेब्यूकोनाजाल (50 प्रतिशत) या ट्राइफ्लोक्सीट्रोबिन 25 प्रतिशत डब्ल्यू. पी. (0.07 प्रतिशत) की दर से प्रयोग करें।

## 2. बंदगोभी / फूलगोभी

फूल गोभी / बंदगोभी में लगने वाले प्रमुख कीट हीरक पृष्ठ शलभ, तम्बाकू की इल्ली, तना बेधक, चेपा तथा प्रमुख रोग डैम्पिंग आफ, मृदुरोमिल फंफूद, आल्टरनेरिया पत्ती धब्बा तथा जीवाण्विक काला सडन रोग हैं।

**बंदगोभी फूलगोभी की फसल में वैधिक ऐकीकृत नाशीजीव प्रबंधन युक्तियाँ**

### बीज/नर्सरी अवस्था

- ❖ अच्छी जल निकासि हेतु एवं डैम्पिंग ऑफ आदि से बचने के लिए जमीन की सतह से लगभग 10 से.मी ऊपर उठी हुई क्यारी तैयार करें।
- ❖ नर्सरी की बुवाई से पहले मिट्टी को 0.45 मिमी. मोटी पॉलीथिन शीट में 2-3 सप्ताह तक ढककर

मिट्टी का मिट्टी सूर्य तापीकरण करें। इसके लिए मिट्टी में पर्याप्त नमी होनी चाहिए।

- ❖ क्यारी की मिट्टी को 50 ग्रा./वर्ग मीटर नीम की खली से उपचारित करें।
- ❖ नर्सरी के दौरान रोगों के नियंत्रण हेतु ट्राइकोडरमा विरडी की 250 ग्राम मात्रा को 3 किग्रा. गोबर की सडी हुई बारीक खाद में अच्छी प्रकार मिलाकर एक सप्ताह के लिए छोड़ दें। बाद में 3 वर्ग मीटर क्यारी में मिट्टी में अच्छी प्रकार मिला दें।
- ❖ डैम्पिंग ऑफ के नियंत्रण के लिए कैप्टान 75 डब्ल्यूपी 0.25 प्रतिशत अथवा कैप्टान 75 डब्ल्यूएस 0.2-0.3 प्रतिशत की दर से प्रयोग करें।

## मुख्य फसल

- ❖ बरसाती मौसम में पेंटिंड बग एवं पछेती रबी मौसम में चेपा से बचाव हेतु इमिडफ्लोरिडा 10 डब्ल्यू. एस. से 5 ग्रा/कि ग्रा की दर से बीज उपचार करें।
- ❖ यदि फसल में 1 लार्वा/पत्ती की दर से हीरक पृष्ठ शलभ उपस्थित हो तो 3 ग्रा./ली. की दर से बेसिलस थुरिन्जेन्सिस का छिड़काव करें।
- ❖ मृदुरोमिल फंफूद के लिए 2.5 ग्रा/ली. जल की दर से मेन्कोजेब 75 डब्ल्यू. पी. या मेटालिक्सिल, मेन्कोजेब 35 एस. सी. का छिड़काव करें।
- ❖ कभी-कभी बरसात के मौसम में नर्सरी में दिखाई देते वाले तना छेदक की रोकथाम के लिए एनएसकोई 5 प्रतिशत या कार्बेरिल 50 डब्ल्यू. पी. का 1600 ग्रा./है. की दर से छिड़काव करें।
- ❖ खेत में पहली और आखिरी कतार सरसों की होनी चाहिए। सरसों की फसल जैसे ही अंकुरित हो उस पर 0.1 प्रतिशत की दर से डाइक्लोरोवास 76 ई.

सी. या क्यूनालफास 25 ई. सी. का 1.5 मिली./ली. जल के साथ छिड़काव करें।

- ❖ एक सप्ताह के अन्तराल पर 1.0 लाख/है. की दर से 3-4 बार अण्ड परजीवाभ (पैरासिटायड) ट्राइकोग्रामाटोडी बैक्ट्रीफसल में छोड़ें।
- ❖ आल्टर्नेरिया पत्ती धब्बा के लिए 0.25 प्रतिशत की दर से अर्थात् 1 लीटर पानी में 2.5 ग्रा. मेन्कोजेब 75 डब्ल्यू. पी. अथवा जिनैब का 0.2 प्रतिशत की दर से छिड़काव करें। संक्रमित पत्तियों को पौधों से तोड़कर हटा देना प्रभावी होता है।
- ❖ वयस्क भूंगों की क्रिया की निगरानी तथा इनके झुंडों को फंदों में फंसाने के लिए 5/है. की दर से फिरोमान फंदे लगाएं।
- ❖ पेंटिड बग के नियंत्रण के लिए आवश्यकतानुसार डार्डमिथोएट 30 ईसी का 660 मि.ली./है. की दर से छिड़काव करें।

### 3. बैंगन

बैंगन में लगने वाले प्रमुख कीट हड्डा भूंग, चेपा, पती मोड़क, फुदका, प्ररोह तथा फल बेधक, लाल मकड़ी कुटकी तथा सूत्रकृमि हैं व डैम्पिंग ऑफ, फोमाप्सिस झुलसा, फल सङ्ग, छोटी पत्ती एवं बेक्टीरियल अंगमारी प्रमुख रोग हैं।

बैंगन की फसल में वैधिक ऐकीकृत नाशीजीव प्रबंधन युक्तियां

#### नर्सरी अवस्था

- ❖ आद्र गलन आदि को रोकने, तथा अच्छी जल निकासी के लिए जमीन से 10 सें.मी. ऊंची क्यारी बनाकर ही नर्सरी तैयार करें।

❖ जून के महीने में मृदा सौर्योक्तरण के लिए 3 सप्ताह तक 45 गेज (0.45 मि.मी.) मोटी पॉलीथीन की चादर बिछाए जिससे मृदावाहित कीटों, जीवाणु मुरझान जैसे रोगों तथा सूत्रकृमियों को कम करने में सहायता मिलती है। तथापि यह ध्यान रखना चाहिए कि सौर्योक्तरण के लिए मृदा में पर्याप्त नमी मौजूद हो।

- ❖ 3 कि.ग्रा. धूरे की खाद में 250 ग्रा. कवकीय विरोधी ट्राइकोडर्मा विरिडी को मिलाएं तथा कल्चर को समृद्ध बनाने के लिए 15 दिनों तक ऐसे ही रखा रहने दें। 15 दिनों के पश्चात् इस सामग्री को 3 वर्ग मीटर की क्यारी में मिलाएं।
- ❖ फल बेधक प्रतिरोधी किस्मी आदि का चुनाव करें।

#### मुख्य फसल

- ❖ सफेद मक्खी आदि के लिए पीले चिपचिपे फंदे या डेल्टा फंदे 2-3/ एकड़ की दर से लगाए।
- ❖ चूसक नाशीजीवों तथा पत्ती मोड़क कीट को नियंत्रित करने के लिए एक-एक सप्ताह के अन्तराल पर एनएसकेई 5 प्रतिशत के 2-3 छिड़काव करें।
- ❖ छोटी पती रोग से प्रभावित पौधों की छंटाई की जानी चाहिए।
- ❖ बेधक शलभों को बड़े पैमाने पर पाश में फंसाने के लिए 100/ हेक्टेयर की दर से गंधपाश लगाए जाने चाहिए। प्रत्येक 15-20 दिन के अन्तराल पर पुराने लासे के स्थान पर ताजा लासा लगाए।
- ❖ आरंभिक अवस्थाओं में समय-समय पर क्षतिग्रस्त प्ररोहों को काट देना चाहिए।

- ❖ 10/एकड़ की दर से पक्षियों को आकर्षित करने के लिए पक्षी ठिकाने बना देने चाहिए।
- ❖ प्ररोह तथा फल वेधक के लिए एक-एक सप्ताह के अन्तराल पर 4-5 बार 1-1.5 लाख/है. की दर से टी. बेसीलियोनिस के अण्ड परजीवी को छोड़ना।

#### 4. मिर्च / शिमला मिर्च

शिप्स. चेपा, बेधक, चौड़ी कुटकी मिर्च में लगने वाले मुख्य कीट व डैम्पिंग आफ, पर्ण चिती डाई-बैंक एन्थ्राक्नोज, फ्यूजेरियम मुर्झान, चूर्णिल फंफूद, विषाणु काम्प्लैक्स एवं झुलसा मुख्य रोग हैं।

**मिर्च / शिमला मिर्च की फसल में वैधिक ऐकीकृत नाशीजीव प्रबंधन युक्तियां**

- ❖ डैम्पिंग ऑफ से बचने के लिए अच्छी निकासी के लिए भूमि स्तर से लगभग 10 सें.मी. ऊपर उठी हुई नर्सरी की क्यारियां तैयार करें।
- ❖ मृदा से पैदा होने वाले नाशीजीयों के लिए मृदा सौर्योकरण के लिए क्यारियों को 45 गेज (0.45 मि.मी.) मोटाई की पॉलीथीन शीट से तीन सप्ताह के लिए ढकें। मृदा सौर्योकरण के दौरान मिट्टी में पर्याप्त नमी होनी चाहिए।
- ❖ 3 कि.ग्रा. की घूरे की खाद में कवकीय विरोधी ट्रा. हारजेनियम मिलाएं और समृद्धिकरण के लिए उसे लगभग 7 दिनों के लिए छोड़ दें। 7 दिनों के बाद 3 मी.<sup>2</sup> की क्यारियों में मिट्टी में मिलाएं।
- ❖ स्यूडोमोनास फ्लुओरिसेन्स (10 ग्रा./कि.ग्रा. बीज) अथवा ट्राईकोडर्मा विरिडी (10 ग्रा./कि.ग्रा. बीज) से बीजोपचार करें।

- ❖ सर्दी के मौसम के दौरान (दिसम्बर-जनवरी) ठण्ड/पाले से बचाने के लिए नर्सरी की क्यारियों के एक सिरे पर खसखस का शेड लगाएं। क्यारियों को पाले से होने वाली क्षति से बचाने के लिए रात के समय पालीथीन की शीटों से ढक दें। तथापि दिन के समय इन शीटों को हटा दें जिससे कि वे सूर्य की गर्मी प्राप्त कर सकें।

#### मुख्य फसल

- ❖ रोपाई के समय दो मिनट के लिए पौधों को 5 मि.ली/ली. की दर से स्यूडोमोनास फ्लोरेसेंस के घोल में डुबोएं।
- ❖ परभक्षी पक्षियों की सुविधा के लिए 10/एकड़ की दर से पक्षियों के ठिकाने स्थापित करें।
- ❖ हापर, चेपा और सफेद मक्खी आदि के लिए 2/एकड़ की दर से डेल्टा जाल स्थापित करें।
- ❖ कुटकी प्रबंधन के लिए एबामैक्टिन का छिड़काव करें।
- ❖ पर्ण कुंचन रोग/मोजेक काम्प्लैक्स से प्रभावित पौधों की आवधिक रूप से छटाई करते हुए उन्हें नष्ट करना चाहिए।
- ❖ फल वेधक (एच. आर्मिजेरा) के लिए 1.5 लाख/है. की दर से ट्राइकोगर्मा प्रजाति के परजीवी अण्डों को आवधिक रूप से छोड़ें।
- ❖ बेधक के कारण क्षतिग्रस्त फलों को समय-समय पर हटाकर उनको नष्ट किया जाना चाहिए।

## The Pahadi Agriculture e-Magazine

Volume-3, Issue-12

[www.pahadiagromagazine.in](http://www.pahadiagromagazine.in)

ISSN: 2583-7869

Article ID: 10411

Bhawan Singh Koranga

Vill- Sama, Block- Kapot

District- Bageshwar

*Kiwi is a nutrient rich fruit valued for its high vitamin c content, antioxidants and market demand. This article summarize the journey of a kiwi growing farmer, outling the key requirements, practical management and common challenges.*

### Introduction

Bhawan ji is a resident of Sama village and currently he is cultivating kiwi. Bhavan ji started this work in 2008. Bhavan ji was earlier a teacher in a secondary school, then became a principal and retired in 2009. He was already interested in gardening. He had a passion to do something in the field of gardening. He planted many different fruit trees but he did not get success in any of them. He told that in 2003-04, under some scheme, a group of farmers visited Himachal Pradesh, among whom was Bhavna's cousin and they brought 5 kiwi plants from there and planted them at their home and those plants

Bhavna liked the taste of those fruits. So he started growing kiwi. He says that he is not affiliated with any government organization and he is doing everything on his own. But he says that he got some financial and technical help under the Jalagam Yojana. And the Horticulture Department also provided help.

### Area and Production

He grows kiwi in open area. He grows it in 4 acres of land and has planted about 600 plants out of which 400 plants are fruiting. And 200 plants will start bearing fruits in a few years. He says that his production is more than 100 quintals; last year it was 70 quintals and this year, he hopes to produce up to 130 quintals.



started giving fruits in a few years. And



### Varieties of Kiwi

Bhavan ji ordered 100 plants from the Horticulture Department, some from Rani Khet Chaubatia, some from Krishi Vigyan Kendra, Pittoragarh, Krishi Vigyan Kendra, Nainital, NBPGR Bhawali, some from Y.S.

Parmar University, Nauni and some from different nurseries of Himachal. And he tells that he has 4 varieties of females and 1 variety of males. In females he has Hayward, Alison, Monty, and in male Tomori variety.

### **Irrigation**

He tells that there is a part of his land where there is no irrigation facility but that part is such that even if irrigation is not done there is still a good production. And for the rest of the part, drip irrigation is done by collecting water in tanks. And he tells that this is not totally organic, he uses compost in it.

### **Marketing, Selling and Pricing**

He tells that some of his customers are old and have been associated with him for many years. And the number of customers increases by 25-30% every year. And at least 25-30 quintals of kiwi are sold to them. There are some shopkeepers who are associated with him, they buy kiwi from him every year and they sell 30-40 quintals in the Haldwani market. Traders from Delhi and Lucknow have been associated with him for 3 years. This year traders from Gorakhpur have also joined him, they also bought a large quantity of kiwi from him. He tells that he sold A

grade kiwi in September. At that time he sold kiwi at the rate of Rs 170 per kg to Rs 190 per kg and B grade kiwi was sold at Rs 110-130 per kg. A grade kiwi means fruit above 85 grams and B grade means 50-70 grams. And the C grade kiwi is sold at around 40-50 per kg and it is mostly used in food processing.

Bhavan ji tells that he also has a food processing unit in which he makes kiwi juice, jam, pickles, chutney, candy etc. He mostly brings B and C grade fruits to it. He mainly does food processing of kiwi but at the same time he also makes pickles of guava, rhododendron, lemon and fiddlehead. He tells that 250 gram pickle is sold for Rs 140 and 450 gram pickle is sold for Rs 250. And he is doing the processing work along with his cousins.

### **Major problem**

Mostly they say that they have problem with wild pigs, they dig the ground which causes problem to the plants.

### **Article by-**

Akirity Rawat

Editor

## सब्जी उत्पादन एक सफल व्यवसाय

श्री नरेंद्र सिंह गुसाई

ग्राम गठरी खरल, ब्लॉक पोखरा, जिला पौड़ी गढ़वाल

वर्तमान में उत्तराखण्ड में कृषि कार्य करना कठिन हो गया है, लगातार कृषि का रकबा कम हो रहा है, बंजर पड़ने के कारण कृषि योग्य भूमि में खरपतवार तेजी से फैल रहे हैं, जिसमें विदेशी प्रजातियाँ चिंता का विषय हैं, क्योंकि यह बहुत तेजी से फैल रही हैं, इससे यहाँ की पारंपरिक पादप विविधता को भी खतरा है, बंदरों का प्रकोप बढ़ता जा रहा है, जलवायु परिवर्तन से कृषि कार्य में बहुत अनिश्चितता आ रही है, इन सब दिक्कतों के



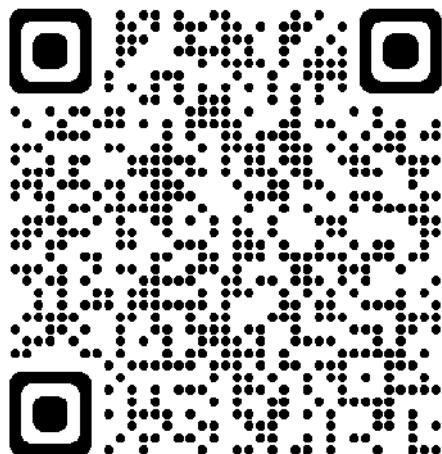
बावजूद यहाँ बहुत सारे प्रगतिशील किसान उभरे हैं, जिन्होंने पारंपरिक खेती से हट कर कृषि का व्यवसायीकरण किया है, जो एक सफल रोजगार का साधन बन कर पारंपरिक किसानों को प्रेरित कर रहा है। श्री नरेंद्र सिंह

गुसाई ग्राम गठरी खरल ब्लॉक पोखरा के निवासी हैं

पहले वो होटल इंडस्ट्री में इंडियन शेफ थे फिर वह गाँव में आकर कृषि कार्य करने लगे, सब्जी उत्पादन, बकरी पालन उनका प्रमुख व्यवसाय है, खाली होने पर वह दिनवारी में काम भी कर लेते हैं, उनके पास कृषि जोत तो कम है लेकिन वह कम इनसे भरपूर उपज ले लेते हैं उनके पास 6 खेत हैं जोकि ज्यादा चौड़े नहीं हैं और लंबाई में लगभग 100 मीटर तक हैं, खेतों में उन्होंने पाईप फिट कर रखे हैं तो सिचाई चिंता का



विषय नहीं है, मुख्य समस्या बन्दरों की है, जंगल खेतों के नजदीक है तो जानवरों का खतरा अधिक रहता है। श्री नरेंद्र सिंह जी जैविक खेती करते हैं, गोबर की खाद का इस्तेमाल करते हैं, और कीट एंव रोगों के लिए छाछ


आदि का प्रयोग करते हैं उन्होंने पोलीहाउस लगाया है जलागम से सहायता मिली कृषि विभाग के लोग भी उनके काम को देखने आये थे, खेती का कार्य वह अकेले करते हैं और मार्केटिंग भी स्वयं बनाई शिमला मिर्च, गोभी, खीरा, बैंगन, तोरी, मटर, आलू लहसुन प्याज उनकी प्रमुख फसलें हैं, उन्होंने 2014 से खेती का कार्य शुरू किया शुरुआत में बहुत अच्छी पैदावार हुई वर्तमान में उनका कहना है कि पैदावार घट रही है बरसात के मौसम में सब्जी उत्पादन से उन्हें अच्छी आय हो जाती है, बरसात में खीरा बहुत अच्छा हो जाता है उन्होंने ब्रोकोली भी लगाई जिसका बहुत अच्छा उत्पादन हुआ लेकिन लोकल मार्केट

में यह विदेशी सब्जी लोगों को पसंद नहीं आई तोरी 50 रुपये किलो, खीरा 30-40 रुपया किलो, बैंगन 30-40 रुपया किलो, फूल गोभी 20-25 रुपया किलो, लौकी 35, और प्याज 30 रुपया किलो बिक जाता है आलू 25 रुपये प्रति किलो की दर से बिक जाता है। आलू का उत्पादन 5 तक हो जाता है बरसात के सीजन में 70-80 हजार की आमदनी हो जाती है, बाकी सीजन से 40000 तक की आय प्राप्त हो जाती है, क्योंकि यहाँ ठण्ड अधिक है, पौधों की बढ़वार धीरे होती है, जलवायु के कारण फूल गोभी का रंग गुलाबी हो गया पोलीहाउस छोटा है तो वहाँ वे कम फसलें ले पाते हैं

# “द पहाड़ी एग्रीकल्चर”

## ई-पत्रिका

‘पर्वतीय कृषि की ऑनलाइन मासिक पत्रिका’



संपर्कसूत्रः

[pahadiagriculture@gmail.com](mailto:pahadiagriculture@gmail.com)

<https://pahadiagromagazine.in>



[www.pahadiagromagazine.in](http://www.pahadiagromagazine.in)